翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Scale factor (Universe) : ウィキペディア英語版
Scale factor (cosmology)
The scale factor, cosmic scale factor or sometimes the Robertson-Walker scale factor parameter of the Friedmann equations is a function of time which represents the relative expansion of the universe. It relates the proper distance (which can change over time, unlike the comoving distance which is constant) between a pair of objects, e.g. two galaxy clusters, moving with the Hubble flow in an expanding or contracting FLRW universe at any arbitrary time t to their distance at some reference time t_0. The formula for this is:
:d(t) = a(t)d_0,\,
where d(t) is the proper distance at epoch t, d_0 is the distance at the reference time t_0 and a(t) is the scale factor. Thus, by definition, a(t_0) = 1.
The scale factor is dimensionless, with t counted from the birth of the universe and t_0 set to the present age of the universe: 13.799\pm0.021\,\mathrm〔 〕 giving the current value of a as a(t_0) or 1.
The evolution of the scale factor is a dynamical question, determined by the equations of general relativity, which are presented in the case of a locally isotropic, locally homogeneous universe by the Friedmann equations.
The Hubble parameter is defined:
:H \equiv
where the dot represents a time derivative. From the previous equation d(t) = d_0 a(t) one can see that \dot(t) = d_0 \dot(t), and also that d_0 = \frac, so combining these gives \dot(t) = \frac, and substituting the above definition of the Hubble parameter gives \dot(t) = H d(t) which is just Hubble's law.
Current evidence suggests that the expansion rate of the universe is accelerating, which means that the second derivative of the scale factor \ddot(t) is positive, or equivalently that the first derivative \dot(t) is increasing over time. This also implies that any given galaxy recedes from us with increasing speed over time, i.e. for that galaxy \dot(t) is increasing with time. In contrast, the Hubble parameter seems to be ''decreasing'' with time, meaning that if we were to look at some ''fixed'' distance d and watch a series of different galaxies pass that distance, later galaxies would pass that distance at a smaller velocity than earlier ones.〔(Is the universe expanding faster than the speed of light? ) (see final paragraph)〕
According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at the present time we receive light from a distant object with a redshift of ''z'', then the scale factor at the time the object originally emitted that light is a(t) = \frac.〔Davies, Paul (1992), ''The New Physics'', (p. 187 ).〕〔Mukhanov, V. F. (2005), ''Physical Foundations of Cosmology'', (p. 58 ).〕
==See also==

*Cosmological principle
*Lambda-CDM model
*Redshift

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Scale factor (cosmology)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.